A spectral analogue of the Meinardus theorem on asymptotics of the number of partitions

نویسنده

  • Tatsuya Tate
چکیده

We discuss asymptotics of the number of states of Boson gas whose Hamiltonian is given by a positive elliptic pseudo-differential operator of order one on a compact manifold. We obtain an asymptotic formula for the average of the number of states. Furthermore, when the operator has integer eigenvalues and the periodic orbits of period less than 2π of the classical mechanics form clean submanifolds of lower dimensions, we give an asymptotic formula for the number of states itself. This is regarded as an analogue of the Meinardus theorem on asymptotics of the number of partitions of a positive integer. We use the Meinardus saddle point method of obtaining the asymptotics of the number of partitions, combined with a theorem due to Duistermaat-Guillemin and other authors on the singularities of the trace of the wave operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developments in the Khintchine-Meinardus Probabilistic Method for Asymptotic Enumeration

A theorem of Meinardus provides asymptotics of the number of weighted partitions under certain assumptions on associated ordinary and Dirichlet generating functions. The ordinary generating functions are closely related to Euler’s generating function ∏∞ k=1 S(z k) for partitions, where S(z) = (1 − z)−1. By applying a method due to Khintchine, we extend Meinardus’ theorem to find the asymptotics...

متن کامل

Meinardus’ theorem on weighted partitions: extensions and a probabilistic proof

The number cn of weighted partitions of an integer n, with parameters (weights) bk, k ≥ 1, is given by the generating function relationship ∑∞ n=0 cnz n = ∏∞ k=1(1− zk)−bk . Meinardus(1954) established his famous asymptotic formula for cn, as n → ∞, under three conditions on power and Dirichlet generating functions for the sequence bk. We give a probabilistic proof of Meinardus’ theorem with we...

متن کامل

Partitions of rt(t, n) into parts

Szekeres proved, using complex analysis, an asymptotic formula for the number of partitions of n into at most k parts. Canfield discovered a simplification of the formula, and proved it without complex analysis. We re-prove the formula, in the asymptotic regime when k is at least a constant times √ n, by showing that it is equivalent to a local central limit theorem in Fristedt’s model for rand...

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2010